Apical root resorption in Class II Div 1 malocclusion patients during en-masse maxillary anterior retraction with mini-screws

Uzma Lunia, Norisha Ehsan Mahmoodb, Ambreen Afzal Ehsanc, Hasnain Sakranid

Abstract

\textbf{Introduction:} Apical root resorption depends on a number of factors and orthodontic treatment is blamed to be one of them. Evaluation often requires radiographic measures and becomes paramount in certain cases. The objective of the present study was to determine the mean change in amount of apical root resorption in Class II Div 1 malocclusion patients treated with en-masse maxillary anterior retraction with the aid of mini-screws.

\textbf{Material and Methods:} This was a Quasi experimental study conducted at Department of Orthodontics, Altamash Institute of Dental Medicine, Karachi. A total of 40 patients with Angle class II Div I malocclusion were enrolled for this study and were aimed for treatment with fixed mechanotherapy (bonded brackets with Roth prescription). OPG was taken pre-treatment and after 6 months post bond-up. The amount of root resorption was measured with the help of vernier calipers. All information was noted on the proforma.

\textbf{Results:} Apical root resorption significantly increased after treatment (2.48 ± 0.82 vs 1.66 ± 0.46; mean change = 0.82 ± 0.47, \(p = 0.0005 \)).

\textbf{Conclusions:} Root resorption cannot be avoided with Orthodontic treatment. Measures must be taken to minimize it and patients with risk factors associated to root resorption must be identified prior to the start of fixed mechanotherapy. This phenomenon must be included in the consent form for every patient.

\textbf{Keywords:} Temporary Anchorage Devices; malocclusion; en-masse maxillary anterior retraction

Introduction

Application of orthodontic forces to the teeth has unwanted side effects on the dentition. One of the common side effects is root resorption. External apical root resorption is an inflammatory process that leads to ischemic necrosis localized in the periodontal ligament when orthodontic force is applied resulting in permanent loss of tooth structure from the apex.1 Multiple factors are involved in the mechanism including genetics, systemic factors, gender differences, type of tooth movements, magnitude, duration and type of force.2,3

Anchorage control is fundamental to orthodontic treatment. Orthodontic mini-screws were developed as intraoral anchors for orthodontic tooth movement like incisor intrusion, canine retraction, en masse retraction of anterior teeth, distalization, molar up righting and protraction. They have no waiting time period, need of laboratory work, are easy to remove after treatment and have lower cost implications than prosthetic implants. Have advantages of being smaller sized and simpler placement.4-9 With mini-screws teeth can be moved to a greater extent, positioned in ideal position and inclination, roots of teeth can travel farther and duration of treatment could be longer than conventional approaches, all of these contributing to root resorption.10-11

Radiographic examination of orthodontically treated patients showed some root resorption.
The maxillary incisors have been regarded as the most susceptible teeth to root resorption. The external apical root resorption has not been studied thoroughly in patients with miniscrews. The purpose of this prospective study was to evaluate the apical root resorption of maxillary incisors in orthodontic patients during en-masse retraction with mini screws. The reduction in root resorption is an aim during orthodontic treatment and may be controlled by reducing the risk factors. Susceptible patients may undergo periodic radiographs to detect severe root resorption and quickly reassess treatment goals.

Material and Methods
After getting approval from CPSP, the study was conducted on Orthodontic patients (both males and females) coming to the orthodontic department at Altamash Institute of Dental Medicine, between ages of 14-22 years. Patients were selected based on defined inclusion and exclusion criteria. All patients or guardians were informed about the purpose of study and informed consent was obtained from them. OPG was taken prior to treatment and a second radiograph was taken after 6 months. The amount of root resorption was measured with the help of vernier calipers. The measurement was done by the principle investigator and cross checked by the supervisor.

The statistical analysis was performed by using SPSS software package (SPSS Version 16.0). The mean and standard deviation was calculated for age, amount of apical root resorption before treatment and after treatment. Frequency and percentages were calculated for gender and teeth under consideration. Paired t-test was applied to compare the mean change in apical root resorption. Stratification with respect to age, gender, central and lateral incisors was done. Post stratification t-test was applied. P value of ≤ 0.05 was taken as significant.

Results
A total of 40 patients with Angle Class II Div 1 malocclusion undertaking treatment with fixed bracket (Roth prescription) were selected for this study. The average age of the patients was 18.2 ± 2.36 years (Figure 1). Out of 40 patients, 17 (42.5%) were males and 23 (57.5%) were females (Figure 2). Teeth considered were maxillary central incisors (42.5%) and maxillary lateral incisors (57.5%) as shown in Figure 3. Pre and post mean change in amount of apical root resorption in Class II Div 1 malocclusion patients during en-masse maxillary anterior retraction with mini-screws was ascertained (Table I). Apical root resorption significantly increased after treatment as compare to pre op status (2.48 ± 0.82 vs. 1.66 ± 0.46; mean change = 0.82 ± 0.47; p = 0.0005). Mean change in amount of apical root resorption also significantly increased after treatment as compared to before treatment in maxillary central incisors (p = 0.0005) and lateral incisors (p = 0.0005) (Table II). Similarly, stratification of age and gender was performed and observed the similar increment in mean amount of apical root resorption after the treatment (Table III and IV).
Table II. Mean change in amount of apical root resorption with respect to Maxillary central and lateral incisor

<table>
<thead>
<tr>
<th>Apical root Resorption</th>
<th>Pre operative</th>
<th>Post operative</th>
<th>(Post-pre) Changes</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxillary Central Incisor (n=17)</td>
<td>1.80±0.61</td>
<td>2.41±0.46</td>
<td>0.61±0.42</td>
<td>0.0005</td>
</tr>
<tr>
<td>Maxillary Lateral Incisor (n=23)</td>
<td>1.56±0.47</td>
<td>2.55±0.46</td>
<td>0.98±0.45</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

Table III. Age wise apical root resorption

<table>
<thead>
<tr>
<th>Age Groups</th>
<th>Apical root Resorption</th>
<th>Pre operative</th>
<th>Post operative</th>
<th>(Post-pre) Changes</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 to 16 (n=12)</td>
<td>1.25±0.26</td>
<td>2.28±0.58</td>
<td>1.03±0.41</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>17 to 20 (n=20)</td>
<td>1.66±0.52</td>
<td>2.52±0.42</td>
<td>0.85±0.47</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>21 to 22 (n=8)</td>
<td>2.27±0.27</td>
<td>2.71±0.21</td>
<td>0.43±0.32</td>
<td>0.0005</td>
<td></td>
</tr>
</tbody>
</table>

Table IV. Gender wise Apical Root Resorption

<table>
<thead>
<tr>
<th>Gender</th>
<th>Apical root Resorption</th>
<th>Pre operative</th>
<th>Post operative</th>
<th>(Post-pre) Changes</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male (n=17)</td>
<td>1.65±0.47</td>
<td>2.53±0.32</td>
<td>0.87±0.43</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>Female (n=23)</td>
<td>1.67±0.59</td>
<td>2.45±0.54</td>
<td>0.78±0.51</td>
<td>0.0005</td>
<td></td>
</tr>
</tbody>
</table>

Table I. Mean change in apical root resorption

<table>
<thead>
<tr>
<th>Apical root Resorption</th>
<th>Pre operative</th>
<th>Post operative</th>
<th>(Post-pre) Changes</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1.66</td>
<td>2.48</td>
<td>0.82</td>
<td>0.0005</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.46</td>
<td>0.54</td>
<td>0.47</td>
<td></td>
</tr>
</tbody>
</table>
Discussion
The growing demand for orthodontic treatment methods that require minimal compliance and maximal anchorage control, particularly by adults, has led to the expansion of implant technology. Mini screws have been introduced as temporary anchorage devices for various purposes: canine retraction, anterior retraction, en-masse anterior retraction, molar up righting, distalization and protraction. They have the advantages of being smaller sized, more implant placement sites, simpler placement methods, short or even no waiting period, no need for laboratory work, easier removal after treatment and lower cost than prosthetic implants and mini plates.

Without a limit to anchorage, teeth can be moved farther, to ideal positions and inclinations with mini screws. Nevertheless, the roots of maxillary or mandibular incisors would travel farther through the dento-alveolus and treatment could also be longer than with conventional approaches. All of these are considered predisposing factors for apical root resorption.

In this study mean amount of apical root resorption was significantly increased after treatment as compared to before treatment (2.48 ± 0.82 vs. 1.66 ± 0.46; mean change = 0.82 + 0.47; p = 0.0005). Liou and Chang in their study showed that root resorption was 2.6 ± 1.25 mm in patients treated with miniscrews for anterior maxillary en-mass retraction. Maxillary incisors of patients treated with mini-screw anchorage have been reported to be more vulnerable to apical root resorption than other teeth.

The apical root resorption of the maxillary incisors after treatment was 2.5 to 2.8 mm, or 16.0% to 20.0% of their original root length; whereas before treatment it was 2.1 to 2.3 mm, or 13.4% to 14.4% of their original root length. Although the maxillary incisors were retracted farther in a longer time and apical root resorption of the maxillary lateral incisors was significantly more than that of pretreatment group, their apical root resorption was still within the 3.0 mm reported previously for patients treated without mini screw anchorage. Mean change in amount of apical root resorption also significantly increased after treatment as compared to before treatment in maxillary central incisors (p = 0.0005) and lateral incisors (p = 0.0005) in the present investigation. Another study ascertained apical root resorption of the maxillary lateral incisors to be greater than that of the maxillary central incisors in both genders and the apical root resorption of the maxillary lateral incisors was significantly more than in the pretreatment group. This could be because the appliances that were used for intrusion of the maxillary incisors were placed on the arch wire between maxillary canine and lateral incisor. Although the intrusive force was the same in the intrusion appliances, the force directed to the maxillary lateral incisors would be heavier than to the maxillary central incisors. The consequence could be greater apical root resorption in the maxillary lateral incisors than in the central incisors. Another explanation could be that the maxillary lateral incisors are inherently more vulnerable to apical root resorption than the maxillary central incisors. There is some disagreement with this statement in the literature.

It has been shown that the greater the tooth movement, more the apical root resorption. Intrusive movements and forces are also thought to cause apical root resorption. The severity of apical root resorption can be directly correlated to duration of treatment, but there is disagreement on this hypothesis. Conclusively, apical root resorption is multi factorial as discussed above.

Orthopentomogram radiographs can only detect apical root resorption after a certain amount of root shortening. Furthermore; radiographs show only the phenomenon but
not the causes of apical root resorption. The underlying factors predisposing a patient to apical root resorption from orthodontic tooth movement are biologic rather than radiographic. The factor of time could be a summation of all factors predisposing a patient to apical root resorption during orthodontic tooth movement.

Conclusions
Mini screw anchorage allows for maxillary en-masse anterior retraction in patients with severe Class II malocclusion. Mechanics involving the use of mini-screws can be easily adopted in Orthodontic practice because of ease of application. The time needed for the greater amount of maxillary en-masse anterior retraction with mini screw anchorage is longer and might pre-dispose patients to more apical root resorption.

References
5. Brudvik P, Rygh P. The initial phase of orthodontic root resorption incident to local compression of the PDL. Eur J Orth 1933; 15: 249
29. Reitan K. Effects of force magnitude and direction of tooth movement on different alveolar bone types. Angle Orthod 1964;34:244-55
35. Rygh P. Ultrastructural changes in tension zones of rat molar periodontium incident to orthodontic tooth movement. Am J Orthod 1974;70:269-81