Buccal and lingual soft tissue pressures
In different malocclusions

Haroon Shahid Qazia, Nazan Kucukkelesb

Abstract

Introduction: Muscular environment of the teeth is thought to be one of the major factors in determining the form and maintenance of the human dental arch. It is imperative to study the labial/buccal and lingual resting and swallowing pressure over the upper and lower central incisors and first permanent molars respectively, in different malocclusions, in natural head position, hence this being the aim of the study.

Material and Methods: The study sample consisted of 60 subjects (30 males and 30 females) with an average age of 19.35 years. The sample was divided into groups based on skeletal and dental classification, gender, and vertical growth pattern. EPL BO Diaphragm Pressure Transducer was used to measure the pressures exerted by buccal and lingual soft tissues. Pressure variability’s were compared between subjects of normal occlusion with Class II division 1, Class II division 2, and Class III individuals statistically.

Results: Comparison showed a significant difference between the various skeletal classifications in generating pressure from the peri-oral musculature.

Conclusions: It was also observed that males had a greater magnitude of pressures than females of the same skeletal pattern. Vertical growth pattern analysis showed that low angle subjects had higher-pressure values than high angle individuals.

Keywords: Transducer; lip and cheek pressures; rest position; tongue

Introduction

Malocclusion is a developmental condition. In most instances, malocclusion and dentofacial deformity are caused not by some pathological process but by moderate distortion of normal development.1 The muscular environment of the teeth has long been thought to be one of the chief factors in determining the form and maintenance of the human dental arch. This environment has been thought of principally as the tongue on the inside and the lips and cheeks on the outside modified by certain other factors such as the mutual support given by the teeth to each other, their inclinations and their responses to the functional forces put upon them.2 Tomes proposed the concept that the position of the teeth in the dental arch is affected by the surrounding musculature as early as 1873.3 In spite of the continuous interest of orthodontists in the influence of soft tissues surrounding the dental arches on the position of teeth, this influence is far from clear.

The relationship between soft tissue pressures and the development of normal occlusion or malocclusion are much easier to understand from the perspective of equilibrium theory. Equilibrium theory as applied in engineering states that an object subjected to unequal forces will be accelerated and thereby will move to different position in space. From this perspective the dentition is obviously in equilibrium since the teeth are subjected to a variety of forces but do not move to a new location under usual circumstances. Proffit4 stated that equilibrium of environmental

a Corresponding Author: BDS, MS, Professor and Head, Department of Orthodontics, Islamabad Medical and Dental College, Bahria University, Islamabad, Pakistan. Email: haroon.qazi@iideas.edu.pk

b DDS, PhD. Former Professor, Department of Orthodontics, Marmara University, Faculty of Dentistry, Istanbul, Turkey.
forces must exist around the dentition. According to this author, two major primary factors are involved in the equilibrium that determines the final position of the teeth. These are (1) the resting pressures of lip, cheek and tongue, and (2) forces produced by metabolic activity within the periodontal membrane.

Many researchers have studied the relationship between form and function of the stomatognathic system. It is widely accepted that an interaction exists between muscle function and dentofacial forms. However, it has long been debated whether muscle function influences bone morphology or merely adapts to local changes in the environment. For years, orthodontists have theorized that the size, posture, pressures from the lips, cheek and function of the tongue must have some relationship to the surrounding oral cavity.5,6,7,8,9,10 Luffingham,11,12 Thuer and Ingervall13 reported that the lip pressure against upper incisors in the rest position varied with overjet. Pressure from the tongue on the teeth has been measured by Winders,14 Proffit,15,16 Lear and Moorrees17 among other investigators.

Hence soft tissue pressures are still a question of debate; there are no comparisons of different malocclusions from the point of soft tissue pressures. Therefore the aim of the present investigation is to study the labial/buccal and lingual resting and swallowing pressure over the upper and lower central incisors and first permanent molars respectively, in different malocclusions, in natural head posture.

Material and Methods

A total of 60 subjects (30 males and 30 females), were selected in this study. The mean age for the total group was 19.35±4.80 years. Mean age for males was 21.17±4.24 years while females had a mean age of 17.53±4.83 years. The subjects were selected according to the following criteria:

Healthy subjects with permanent dentition, good facial balance determined by visual inspection. None of the subjects reported any kind of habits that could effect lip, cheek or tongue pressure. None of the subjects had undergone previous orthodontic or surgical treatment. None of the subjects were under any pharmaceutical therapy that might influence muscle tone. A consent form was reviewed and signed by each subject.

Subjects with four kinds of malocclusion were selected. That is Angle’s, Class I, Class II-division 1, Class II-division 2, and Class III dental and skeletal relationship. The dental classification of each subject corresponded with their skeletal classification. For example; a subject with Class I malocclusion was also skeletal Class I. The sample was grouped according to three categories:

According to the skeletal and dental classification into four groups (a) Class I (C1), (b) Class II division 1 (C21), (c) Class II division 2 (C22) and (d) Class III (C3).

According to gender difference. Males and females of each skeletal and dental classification group were separated thus resulting into eight groups. (a) M1, (b) M21 (c) M22, (d) M3, (e) F1, (f) F21, (g) F22, (h) F3.

According to the vertical pattern of growth into (a) high angle and (b) low angle groups. (SN-GoMe was used as the separating criteria. More than 38° SN-GoMe was considered to be high angle).

Plaster models, photographs, panoramic and lateral cephalometric films were taken initially. Cephalograms were used to determine the skeletal classification, while the dental classification was determined clinically and reconfirmed by the plaster models. Panoramic radiographs were used to rule out any major periodontal problem.

An Epl BO diaphragm pressure transducer was connected to a digital strain indicator to measure lip, cheek and tongue pressures exerted on the maxillary and mandibular dental arches.
Calibration - The pressure transducer was calibrated by using a pressure chamber, which had a pressure manometer (Figure.1). The transducer was placed in the chamber passing from a rubber bolt and air pressure was increased up to 1000 gm/cm². The values of the transducer were recorded on every 20 gm/cm² and the gauge factor of the monitor was correlated so that a one digit on the monitor of strain indicator would correspond to 1gm/cm² pressure.

Pressure recording method - The stents were fabricated on the duplicated models. Four stents were constructed for each subject, for maxillary and mandibular right central incisors and first molars. Using a bird beak plier a 0.016 x 0.016-inch stainless steel wire was shaped to mimic the crown morphology, extending from the labial/buccal gingival margin to the lingual/palatal gingival margin. The wire was closely adapted to the crown of the tooth. This wire served as a base for the acrylic cap. Self cure acrylic was then placed in such a way that the wire was embedded in it. The extension of the acrylic cap was approximately half the crown length on both the labial/buccal and lingual/palatal sides. Thus, the pressure was measured from the cervical one third of the crown. The stent did not encase the mesial or distal surfaces of the tooth (Figure. 2).

A pressure measuring system based on a strain indicator and an intraoral pressure transducer was adjusted. The fabricated stents were placed on the respective teeth to check their fit. Once confirmed the transducer was ligated to the wire extension of the stent. The distance of the transducer after ligation was approximately 1-2 mm, from the surface of the tooth. Maximum effort was made to ensure that the ligation did not exert any unintentional pressure on the transducer.

The subject was seated in the dental chair and natural head position was established with the relaxed subject sitting upright, fixing his/her gaze on a stationary eye level object six feet away. The patient was instructed not to eat or drink anything too hot or too cold before the appointment. The stent-transducer complex was then placed on the desired tooth (Figure.3, 4, 5). To maintain the thermal compensation, the transducer was placed in the mouth and allowed to reach to the mouth temperature at least for 10 seconds. The upper lip was gently retracted from the transducer by using a mouth mirror and the balance of the gauge adjusted to zero. The lip was released and for the assessment of the rest position, the subjects were asked to count to determine the rest position. During recording of the rest position five readings were taken and an average of five was used while maximum values were recorded for other measurements.

Types of Pressures - Measured Resting and tensing pressures were recorded in the present study.

Resting pressures were recorded during lips and tongue in a relaxed position. Tensing pressures were measured when the subject swallowed 10 cc of water and during pronunciation of “U” sound for labial/buccal side, and pronouncing “EN” sound for lingual side. Pressures while pronouncing “U” and “EN” sounds were only recorded in the upper arch. At the recording session, recordings were made one at a time in the following locations;

- Maxillary right central incisor (labial and lingual)
- Maxillary right first molar (buccal and lingual)
- Mandibular right central incisor (labial and lingual)
- Mandibular right first molar (buccal and lingual).

Dahlberg’s method was used to calculate the error of method. The measurements of 15 randomly selected patients were repeated an hour after the first recordings. There was no significant difference between the measurements. Statistical evaluation was made by using the first measurements.
Figure 1: Laboratory calibration (the calibration of the transducer by using a pressure chamber)

Figure 2: Customized acrylic stents

Figure 3: Transducer placed on the labial surface of upper central incisor.

Figure 4: Transducer placed on the lingual surface of upper central incisor.

Figure 5: Transducer placed on the buccal surface of lower first molar.

Figure 6: Transducer and stent thickness.
The data in this study was evaluated by SPSS program for windows. The groups were compared with each other by Mann Whitney U test.

Results

Malocclusion groups
Almost all the results according to skeletal classification were statistically significant. Mean Cephalometric values are listed in Table I. Mean pressure values are listed in Table II and their comparisons in Table III.

Lip pressures
Upper incisor buccal resting pressures were recorded highest in Class II div 1 subjects (26.10gm/cm²±2.20) and lowest in Class III subjects (12.36gm/cm²±1.65) (Table II). Comparison among the groups showed significant difference in C1 x C21 (p<.000) (Table II), C21 x C22 (p<.001) (Table III), and C21 x C3 (p<.000) (Table III). During swallowing greatest pressures were recorded in Class II div II (106.37gm/cm²±2.33) and lowest in Class II div 1 (45.44gm/cm²±2.40) (Table II). Comparisons among the groups revealed great significance in all the groups. Speech pressures like resting pressures were higher in Class II div 1 subjects and lower in Class III subjects.

In the lower arch highest pressures at rest were in Class III subjects, 83.22gm/cm²±2.35, and lowest in Class II div 2 subjects, 27.68gm/cm²±1.71 (Table II). During swallowing maximum pressures were recorded in Class II div 2 subjects, 111.93gm/cm²±1.85, and minimum in Class III subjects, 51.43gm/cm²±2.49 (Table II). Comparisons among groups revealed great significance in all groups, except C1 x C21 (p<.436)(Table III) during swallowing.

Cheek pressures
In the upper arch highest pressures during rest and swallowing were recorded in Class II div 2 subjects (44.21gm/cm² & 98.95gm/cm²), and lowest in Class III subjects (24.74gm/cm² & 45.15gm/cm²) (Table II). Comparisons between the groups revealed that C1 x C3 (p<.595)(Table III) showed no significance at rest, while comparisons of all other groups at rest and swallowing showed great significant difference (Table III). During speech the highest pressures were in Class II div 1 subjects (67.91gm/cm²±2.48), and lowest in Class I subjects (38.20gm/cm²±4.15) (Table II).

In the lower arch pressure values were highest in Class III subjects (39gm/cm²±2.74) and lowest in Class II div 1 subjects (18.77gm/cm²±2.53) (Table II). While swallowing greatest pressure was recorded in Class II div 2 individuals (127.81gm/cm²±2.11). Comparisons between groups showed no significance between C1 x C21 (p<.412) (Table III) during swallowing, while all other comparisons during rest and swallowing showed great significance (Table III).

Lingual pressure
In the upper incisor lingual area highest pressures were recorded in Class II div 1 subjects (34.29gm/cm²±2.54), and lowest in subjects of Class II div 2 (18.56gm/cm²±1.84)(Table II). When the groups were compared with each other all the comparisons had great significant difference except that of C1 x C3 (p<.412)(Table III). While in molar area highest values were in Class I subjects (34.12gm/cm²±3.11) and lowest in Class II div 1 subjects (0.00gm/cm²±3.04) (Table II). Great significant differences were seen when the groups were compared with each other (Table III). However swallowing pressures were highest both at the incisor and molar area in Class I subjects. During speech highest pressure recordings were observed in Class II div 1 subjects in the incisor area, while Class I subjects showed the highest speech values in the molar area.

Lower incisor lingual resting pressures were highest in Class I subjects (29.96gm/cm²±3.32) while the lowest in Class II div 1 subjects (2.31gm/cm²±2.24) (Table II). When all the groups were compared with each other they showed significant differences (Table III).
the molar area pressures were highest in Class I subjects (24.99gm/cm²±2.81) and lowest in Class II div 1 subjects (12.14gm/cm²±1.70) (Table II). Comparisons showed significant differences in C21 x C3, C22 x C3, C1 x C22 and C1 x C21 (p<.05) (Table III). During swallowing highest pressure values in the incisor area were in Class II div 2 subjects (128.86gm/cm²±2.08) and lowest in Class III subjects (75.60gm/cm²±1.96)(Table II). In the molar area greatest pressures were in Class II div 2 subjects (142.34gm/cm²±2.35) and lowest in subjects of Class III (101.14gm/cm²±2.41) (Table II). No significance was shown in C1 x C21 (p<.461), while comparisons of other groups with each other were all highly significant (Table III).

Gender groups

It was observed that males had significantly higher pressure values then females irrespective of the skeletal class or vertical growth pattern (Tables IV, V, VI).

Vertical growth groups

Low angle individuals showed higher-pressure values then high angle subjects, but only some values were statistically significant (Table VII).

Table I: The Mean values of Cephalometric Parameters of Class I, Class II Division I, Class II Division II and Class III Subjects

<table>
<thead>
<tr>
<th>Cephalometric Parameters</th>
<th>Class I</th>
<th>Class II DIV I</th>
<th>Class II DIV II</th>
<th>Class III</th>
</tr>
</thead>
<tbody>
<tr>
<td>X (SD)</td>
<td>X (SD)</td>
<td>X (SD)</td>
<td>X (SD)</td>
<td>X (SD)</td>
</tr>
<tr>
<td>SNA</td>
<td>78.16</td>
<td>5.48</td>
<td>78.16</td>
<td>5.48</td>
</tr>
<tr>
<td>SNB</td>
<td>78.16</td>
<td>5.48</td>
<td>78.16</td>
<td>5.48</td>
</tr>
<tr>
<td>ANB</td>
<td>78.16</td>
<td>5.48</td>
<td>78.16</td>
<td>5.48</td>
</tr>
<tr>
<td>Max. Depth</td>
<td>78.16</td>
<td>5.48</td>
<td>78.16</td>
<td>5.48</td>
</tr>
<tr>
<td>X (n=15)</td>
<td>Y (n=15)</td>
<td>Z (n=15)</td>
<td>X (n=15)</td>
<td>Y (n=15)</td>
</tr>
</tbody>
</table>

Table II: The Mean values of Pressure Parameters of Class I, Class II Division I, Class II Division II and Class III Subjects

<table>
<thead>
<tr>
<th>Pressure in gm/cm²</th>
<th>X (SD)</th>
<th>X (SD)</th>
<th>X (SD)</th>
<th>X (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNA</td>
<td>78.16</td>
<td>5.48</td>
<td>78.16</td>
<td>5.48</td>
</tr>
<tr>
<td>SNB</td>
<td>78.16</td>
<td>5.48</td>
<td>78.16</td>
<td>5.48</td>
</tr>
<tr>
<td>ANB</td>
<td>78.16</td>
<td>5.48</td>
<td>78.16</td>
<td>5.48</td>
</tr>
<tr>
<td>Max. Depth</td>
<td>78.16</td>
<td>5.48</td>
<td>78.16</td>
<td>5.48</td>
</tr>
</tbody>
</table>

Table III: Comparisons of Pressure values of Skeletal and Dental Group

<table>
<thead>
<tr>
<th>Pressure</th>
<th>C1 X C21</th>
<th>C1 X C22</th>
<th>C1 X C3</th>
<th>C21 X C22</th>
<th>C21 X C3</th>
<th>C22 X C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>X (SD)</td>
</tr>
</tbody>
</table>

Table IV: The Mean values of Pressure Parameters of Male Class I, Class II Division I, Class II Division II and Class III Subjects

<table>
<thead>
<tr>
<th>Pressure in gm/cm²</th>
<th>MALES</th>
<th>X (SD)</th>
<th>X (SD)</th>
<th>X (SD)</th>
<th>X (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNA</td>
<td>78.16</td>
<td>5.48</td>
<td>78.16</td>
<td>5.48</td>
<td>78.16</td>
</tr>
<tr>
<td>SNB</td>
<td>78.16</td>
<td>5.48</td>
<td>78.16</td>
<td>5.48</td>
<td>78.16</td>
</tr>
<tr>
<td>ANB</td>
<td>78.16</td>
<td>5.48</td>
<td>78.16</td>
<td>5.48</td>
<td>78.16</td>
</tr>
<tr>
<td>Max. Depth</td>
<td>78.16</td>
<td>5.48</td>
<td>78.16</td>
<td>5.48</td>
<td>78.16</td>
</tr>
</tbody>
</table>
Table V: The Mean values of Pressure Parameters of Female Class I, Class II Division I, Class II Division II and Class III Subjects

<table>
<thead>
<tr>
<th>Pressure in g/cm²</th>
<th>F1 (n=7)</th>
<th>F2 (n=7)</th>
<th>F3 (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR</td>
<td>13.0</td>
<td>16.0</td>
<td>15.0</td>
</tr>
<tr>
<td>LR</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
</tr>
<tr>
<td>BS</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
</tr>
<tr>
<td>LN</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Discussion

In making diagnosis of malocclusion the Orthodontist must make a “scientific guess” and think into the tissused is believed to exert fluid pressure measuring device. Moawad et al. found the reliable pressure measurement readings. Their absolute magnitude, since there is a intraoral pressure in different malocclusions has not been studied. Perhaps it is important to point out that the specific focus of this study is to compare soft tissue pressures of different malocclusions, rather than finding their absolute magnitude, since there is a remarkable inter individual variability.

The EPL BO diaphragm type transducer was used in this study due to its precise and reliable pressure measurement readings. Lindeman and Moore compared various pressure measuring devices and found the EPL transducer to be the superior pressure measuring device. Moawad et al. reconfirmed these findings by comparing beam type with diaphragm type transducer. The soft tissues are believed to exert fluid pressure rather than solid force, therefore the diaphragm type transducer was suggested for measuring pressure of soft tissue since it reacts to pressure rather than force.

Though our mean pressure values were higher than previously reported, this could be due to the higher sensitivity of the transducer used, as also reported by Lindeman and Moore. Our pressure transducer was 1 mm thick and 3.37 mm in diameter. This was according to the criteria set by Weinstein et
al20 1983, Gould and Picton21 1962, and Lear et al22 1965 who proposed that for an accurate resting pressure measurement the transducer should not be more than 2 mm away from the tooth surface. The thickness of our transducer and stent together was not more than 1.5 mm (Figure. 6). The stent-transducer complex did not exceed 2 mm from the tooth surface after its placement.

To minimize the pressure changes due to extension or flexion, as reported by Hellsing et al,23 all readings were taken with the subjects in natural head position.

Comparison between different malocclusions

Labial/ Buccal Pressures - Our results showed that the upper lip pressure on the central incisors was 13.26 gm/cm\(^2\) in Class I subjects. The maximum lip pressure was observed in Class II div 1 patients (mean 26.1 gm/cm\(^2\)) and the least in Class III subjects (mean 12.36 gm/cm\(^2\)). The findings for the lower lip were considerably different with the highest pressures recorded in Class III patients (83.22gm/cm\(^2\)) and lowest in Class II div 2 individuals (27.68gm/cm\(^2\)).

Luffingham11,12 and Thuer and Ingervall13 reported that the lip pressure against upper incisors in the rest position varied with overjet, higher in subjects with increased overjet than in those with normal overjet. These observations relate to our findings as well, indicating the adaptive character of lip pressure. The resting lip pressure is a result of the position of the incisors. Also the pressure during rest is the result of a passive drape of the soft tissue against the dentition and facial/skeletal morphology. Highest lower lip resting pressures can be explained by the hypertonic lower lip with increased mentalis activity in Class III subjects exerting increased pressure. The lowest lower lip resting pressures in Class II div 2 can be explained by the increased overbite, thus the lower lip resting more on the upper incisors as explained by Lapatki et al.24 Highest resting buccal pressures in the maxilla were recorded in Class II div 2 subjects and lowest in Class III subjects. These findings were very similar to Howland and Brodies2 results. This can be explained by the increased vertical growth pattern in Class III subjects (SN-GoMe = 39.13 ± 3.50) which has a weak muscular pattern. Buccal pressures in the mandible were highest in Class III subjects (39gm/cm\(^2\)) and lowest in Class II div 1 subjects (18.77gm/cm\(^2\)). These findings relate to the dentofacial morphology in Class III subjects who have a wider mandible and posterior cross bite with buccally placed molars.

The measurement of labial pressures during swallowing has rarely been discussed in previous literature, but we measured and found that labial and buccal pressures during swallowing was highest in Class II div 2 subjects for both upper and lower arch. These higher lip pressure readings can be explained by: (a) Short facial height and (b) Hyperactive mentalis muscle. While in the lower vestibule, highest resting values were of Class III group; however during swallowing the highest values were of Class II div 2 group. Increased buccinator activity in low angle population may be the answer to this controversy.

Lingual Pressure

In our study mean lingual pressures on the upper incisors were always higher in all classifications than the labial pressures. These findings agree with those of Winders,14 Proffit,15,16 & Lear and Moorrees,17 who reported lingual forces to be higher than the buccal forces.

In the lower incisal region tongue pressures were all smaller than the outer pressures. In the lower jaw the resting tongue pressures were greatest in Class I subjects and lowest in Class II div 1 subjects, agreeing with the results of Archer et al.26 Generally tongue pressures in the mandible in all classifications
except Class I, were lower than the resting
tongue pressures on the maxillary teeth.
Our study revealed that in the upper arch
Class I subjects exhibited the highest
recordings for swallowing (138.15gm/cm²),
while in the lower arch Class II div 2
individuals had the greatest pressure values
during swallowing. In all groups tongue
pressures were higher than the outer
pressures during swallowing in mandibular
incisor and molar area. In the maxilla tongue
pressures were also higher than the outer
pressures during swallowing except that
Class II div 1 subjects showed greater buccal
pressures at the molar area. We found
swallowing pressures at the upper molar area
higher than the upper incisors in all
malocclusions except Class II div 1, agreeing
with findings of Thuer & Ingervall.27
Recordings for pressure were also recorded
while the subjects pronounced the “EN”
sound. It was noted that generally the
pressures while saying “EN” were higher at
the upper molar area than the upper incisor,
as also reported by Kato et al.35 Speech
pressures were greater than resting pressures
but less than swallowing pressures, in
accordance with findings of Thuer &
Ingervall.28
Comparison between Gender
Thuer & Ingervall13 found no correlation
between lip pressures and gender. Mitchell et
al,29 Barlow and Muller,30 Posen,31 all reported
greater pressure values in males than in
females. In our study a significant difference
in perioral pressure was shown to exist
between males and females of the same
classification, pressure values of males being
higher.
Barlow explained the difference in pressure
between males and females as follows:
1. The fact that males generate significantly
higher pressures is likely due to fundamental
differences in the representation and
distribution of contractile elements in the
lower face.
2. A greater number of fibrils in the
orbicularis oris muscle, resulting in greater
number of actin-myosin cross bridges may
account for the higher forces observed in male
adults.
3. Another factor to consider is the difference
in mechanical advantage of certain perioral
muscles in men and women.
Comparison of high angle with low angle
subjects
In the present study we observed
insignificantly greater pressures in low angle
subjects. During swallowing values were
significantly higher in low angle group in the
incisor and molar areas. Proffit,32 Umemori,33
Nanda34 have reported that patients with a
low mandibular plane angle have greater
development of their perioral and masticatory
musculature than high angle subjects.
It seems like the malocclusion types and the
gender is affecting the buccal and lingual
pressures. Still we do feel a need for further
studies made on larger and well-defined
groups to clear some differences.

Conclusions
• Mean pressures recorded were higher
than previously reported in the literature.
• All classifications showed significant
pressure differences.
• Upper lip pressures are related to incisor
inclinations, overjet and skeletal
morphology.
• Lower lip pressures are more related to
skeletal morphology and facial height.
• Lingual pressures are generally higher
than buccal pressures.
• Swallowing pressures are much higher
than the resting pressures.
• Speech pressures fall in between the
resting pressures and the swallowing
pressures.
• Cheek pressures are higher than lip
pressures.
• Anterior labial and lingual pressures
differed from posterior buccal and lingual
pressures in each classification.
• Males showed overall higher pressures
than females.
• Low angle subjects showed insignificantly
greater pressures than high angle subjects.
References